GTM CORPORATION ISSUED DATE :2006/04/04 REVISED DATE :

GQ2141

CMOS Positive Voltage Regulator

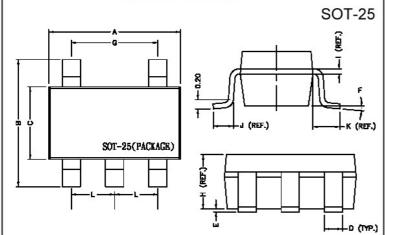
Description

The GQ2141 of positive, linear regulator feature low quiescent current (50µA typ.) with low dropout voltage and excellent PSRR, thus making them ideal for Telecommunications and other battery applications.

The GQ2141's output voltage can be adjusted with an external resister divider.

These rugged devices have both Thermal Shutdown, and Current Fold-back to prevent device failure under the "Worst" of operating conditions.

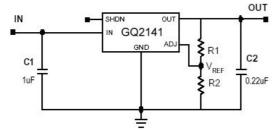
As an additional feature, the GQ2141 is stable with an output capacitance of just extended 0.22µF or greater.

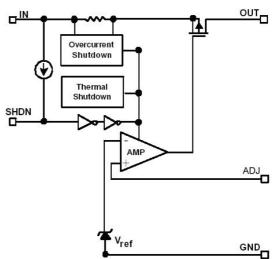

Features

- Very Low Dropout Voltage
- Guaranteed 150mA output
- Over-Temperature Shutdown
- Current Limiting
- Short Circuit Current Fold-back
- Excellent PSRR Type 70dB
- Power-saving Shutdown Mode
- Factor Pre-set Output Voltage

Applications

- Battery Powered Widgets
- Instrumentation
- Wireless Devices
- PC Peripherals
- Portable Electronics
- Cordless Phones
- Electronic Scales
- Cellular Phones
- Cameras
- Telecommunications


Package Dimensions


Marking :	5	4	
Date Code— 1:Vin 4:ADJ 2:Gnd 5:Vout 3:SHDN	1 D →	A D 2	Accurate ± 1.5% serial:01~99 Nth month:A~M I no use Year:"6"=2006 "*=2006

REF.	Millimeter		REF.	Dimensions		
nLI.	Min.	Max.	ΠLΙ.	Millimeter		
Α	2.70	3.10	G	1.90 REF.		
В	2.60	3.00	Н	1.20 REF.		
С	1.40	1.80	-	0.12 REF.		
D	0.30	0.55	J	0.37 REF.		
E	0	0.10 K 0.60		0.60 REF.		
F	0°	10°	L	0.95 REF.		

Typical Application Circuit

Functional Block Diagram

Absolute Maximum Ratings

Parameter	Symbol	Ratings	Unit
Input Max Voltage	VIN	6	V
Output Current	Ιουτ	Pd/(VIN- VO)	mA
Output Voltage	Vout	GND-0.3 to VIN+0.3	V
Operating Ambient Temperature	Topr	-40 ~ +85	°C
Junction Temperature	Tj	-40 ~ +125	°C
Maximum Junction Temperature	Tj Max	150	°C
Power Dissipation(△T=100°C)	PD	380	mW
EDS Classification		В	

Electrical Characteristics TA=25°C unless otherwise noted

 $(V_{\text{OUT}}(T) > 2.0V \text{ VIN} = V_{\text{OUT}}(T) + 0.5V; \text{ VOUT}(T) \leq 2.0V \text{ VIN} = V_{\text{OUT}}(T) + 1V; \text{ VSHDN} = V_{\text{IN}}, \text{ CIN} = C_{\text{OUT}} = 1uF. \text{ GQ2141 is tested with } 2.45V \text{ VIN} = V_{\text{OUT}}(T) + 0.5V; \text{ VOUT}(T) \leq 2.0V \text{ VIN} = V_{\text{OUT}}(T) + 1V; \text{ VSHDN} = V_{\text{IN}}, \text{ CIN} = C_{\text{OUT}} = 1uF. \text{ GQ2141 is tested with } 2.45V \text{ VIN} = V_{\text{OUT}}(T) + 0.5V; \text{ VOUT}(T) \leq 2.0V \text{ VIN} = V_{\text{OUT}}(T) + 1V; \text{ VSHDN} = V_{\text{IN}}, \text{ CIN} = C_{\text{OUT}} = 1uF. \text{ GQ2141 is tested with } 2.45V \text{ VIN} = V_{\text{OUT}}(T) + 0.5V; \text{ VOUT}(T) \leq 2.0V \text{ VIN} = V_{\text{OUT}}(T) + 1V; \text{ VSHDN} = V_{\text{IN}}, \text{ CIN} = C_{\text{OUT}} = 1uF. \text{ GQ2141 is tested with } 2.45V \text{ VIN} = V_{\text{OUT}}(T) + 0.5V; \text{ VOUT}(T) = 0.5V; \text{ VIN} = V_{\text{OUT}}(T) + 0.5V$ output.)

Parameter	Symbol	Condition		Min	ΤΥΡ	Max	Unit
Output Voltage	Vout(E) (Note1)	Io=0.1mA		-1.5	Vout(T)	1.5	%
Oulput vollage		Io=150mA		-2.0		2.0	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Current Limit	ILIM	Vo>800mV		150	200	-	mA
Fold-back Current	Ifв	\ \	/o=0V	-	80	-	μA
Load Regulation	REGLOAD	Io=0.1 to 150mA	Vout>2.0V Vin=Vout(T)+0.5V	-1	0.5	1	- %
			Vout≤2.0V Vin=Vout(T)+1V	-2	-	2	
	Vdropout	Io=150mA Vo=Vouт(E)-2%	Vo∪⊤(T)≥2.0V	-	300	500	mV
Dropout Voltage			1.8V≤Vouт(T)<2.0V	-	700	1000	
			1.5V≤Vouт(T)<1.8V	-	900	1300	
Quiescent Current	Iq	VIN=5	V, Io=0mA	-	60	-	μA
Ground Pin Current	Ignd	VIN=5V, IO=1mA to150mA		-	50	-	μA
Line Regulation	REGLINE	Io=0.1mA, Vout>2.0V VIN=Vout(T)+0.5V to 5.5V		-0.2	0.1	0.2	%
	REGLINE	Io=0.1mA, Vouт≤2.0V ViN=Vouт(T)+1V to 5.5V		-0.4	-	0.4	/0
Input Voltage	Vin			Note3	-	5.5	V
Over Temperature Shutdown	OTS			-	137	-	°C
Over Temperature Hysterisis	OTH			-	23	-	°C
Output Voltage Temperature Coefficient	тс			-	30	-	ppm/°C
Power Supply Rejection	PSRR	Ro=100Ω,C	Ro=100Ω,Co=2.2mF, f=1kHz		70	-	dB
Output Voltage Noise	eN	f=10Hz~100kHz	, Io=10mA, Co=2.2µF	-	30	-	μVrms
SHDN Input Threshold	VSHDNH	V _{SHDN} =0.8* V _{IN}		0.8* Vin	-	VIN	V
Shidh Input Theshold	VSHDNL	V _{SHDN} =0.6V		0	-	0.6	V
SHDN Input Bias Current		V _{IN} =5V, EN=0v, or 5V		-	0.01	-	μA
Shutdown Supply Current	Isd	V _{IN} =5V, Vo=0V		-	0.5	1	μA
Shutdown Output Voltage	Vo,sd	Output Loading≤1200Ω, Vo=0V		0	-	0.4	V
ADJ Reference Voltage	Vref			1.206	1.225	1.243	V
ADJ Input Bias Current		VIN=5.5V, VADJ=1.3V		-	0.05	0.1	μA

Note 1: VOUT (E) = Effective Output Voltage (i.e. the output voltage when "VOUT(T)>2.0V VIN=VOUT(T)+0.5V; VOUT(T)≤2.0V VIN=VOUT(T)+1V; VSHDN=VIN" is provided at the VIN pin while maintaining a certain IOUT value).

2: VOUT (T) = Specified Output Voltage

3: VIN (MIN) =VOUT+VDROPOUT

Ordering Information (contd.)

Part Number	Marking	Output Voltage	Part Number	Marking	Output Voltage
GQ2141-AD	1DAD2 XXXX	Adjustable			

Detailed Description

The GQ2141 of COMS regulator contains a PMOS pass transistor, voltage reference, error amplifier, overcurrent protection, and thermal shutdown.

The P-channel pass transistor receives data from the error amplifier, over-current shutdown, and thermal protection circuits. During normal operation, the error amplifier compares the output voltage to a precision reference. Over-current and Thermal shutdown circuits become active when the junction temperature exceeds 150° C, or the current exceeds 150mA. During thermal shutdown, the output voltage remains low. Normal operation is restored when the junction temperature drops below 120° C.

The GQ2141 switches from voltage mode to current mode when the load exceeds the rated output current. This prevents over-stress. The GQ2141 also incorporates current fold-back to reduce power dissipation when the output is short circuited. This feature becomes active when the output drops below 0.8 volts, and reduces the current flow by 65%. Full current is restored when the voltage exceeds 0.8 volts.

External Capacitors

The GQ2141 is stable with an output capacitance to ground of 0.22µF or greater. Ceramic capacitors have the lowest ESR, and will offer the best AC performance. Conversely, Aluminum Electrolytic capacitors exhibit the highest ESR, resulting in the poorest AC response.

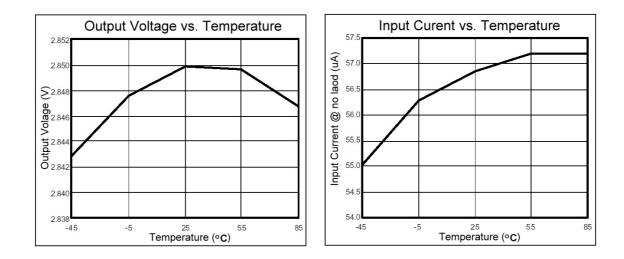
A second capacitor is recommended between the input and ground to stabilize Vin. The input capacitor should be at least 1µF to have a beneficial effect.

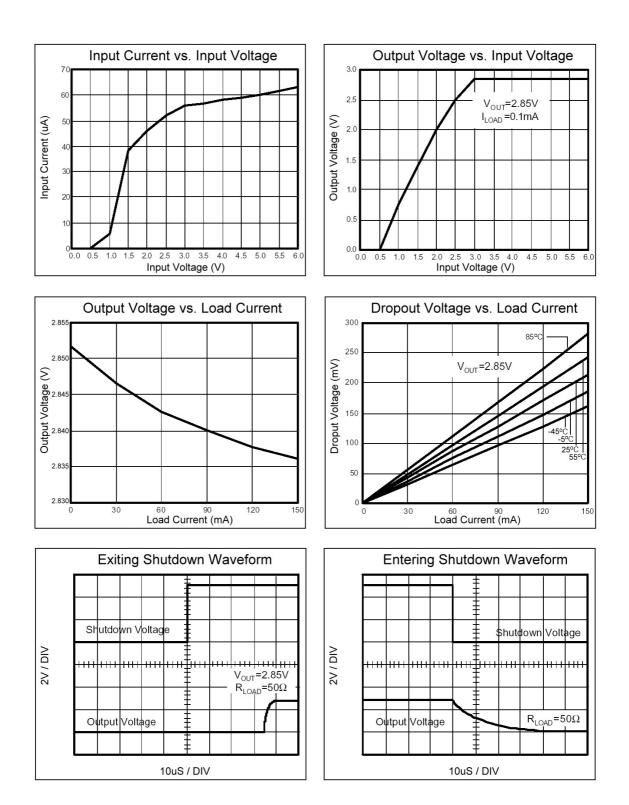
A large capacitor improves the AC ripple rejection, but also makes the output come up slowly. This "Soft" turn-on is desirable in some applications to limit turn-on surges.

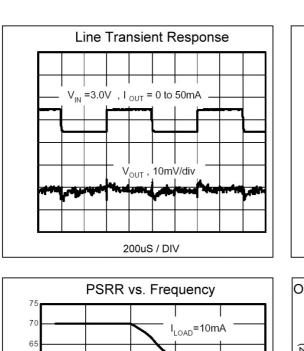
All capacitors should be placed in close proximity to the pins. A "Quiet" ground termination is desirable. This can be achieved with a "Star" connection.

Shutdown

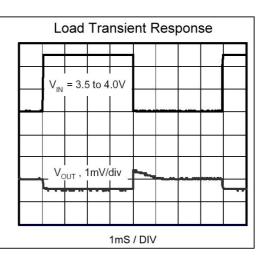
When actively, pulled low, the PMOS pass transistor shuts off, and all internal circuits are powered down. In this state, the quiescent current is less than 1µA. This pin behaves much like an electronic switch.

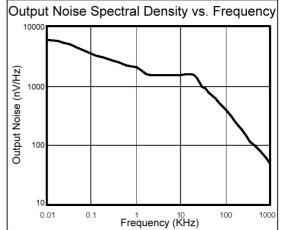

Adjustable Version

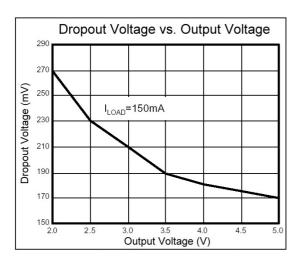

The GQ2141 features a user-adjustable output through an external feedback resister divider. To set the output of GQ2141 use the following equation:


VOUT=VADJ * (1+R1/R2)

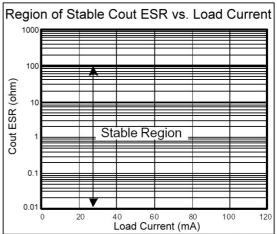
VADJ=1.225, use 1% or better resistors


Characteristics Curve





GTM



10

Frequency (KHz)

100

1000

Important Notice: All rights are reserved. Reproduction in whole or in part is prohibited without the prior written approval of GTM.

- GTM reserves the right to make changes to its products without notice. GTM semiconductor products are not warranted to be suitable for use in life-support Applications, or systems.
- GTM assumes no liability for any consequence of customer product design, infringement of patents, or application assistance.

60

40 35

30 0.01

0.1

PSRR (dB) 55 50 45

Griv assumes no liability for any consequence of customer product design, infiningement of patents, i Head Office And Factory:
Taiwan: No. 17-1 Tatung Rd. Fu Kou Hsin-Chu Industrial Park, Hsin-Chu, Taiwan, R. O. C.
TEL: 886-3-597-7061 FAX: 886-3-597-9220, 597-0785
China: (201203) No.255, Jang-Jiang Tsai-Lueng RD., Pu-Dung-Hsin District, Shang-Hai City, China TEL: 86-21-5895-7671 ~ 4 FAX: 86-21-38950165